Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances.

نویسندگان

  • Song-Liang Chua
  • Yidong Chong
  • A Douglas Stone
  • Marin Soljacić
  • Jorge Bravo-Abad
چکیده

We present a theoretical analysis of lasing action in photonic crystal surface-emitting lasers (PCSELs). The semiclassical laser equations for such structures are simulated with three different theoretical techniques: exact finite-difference time-domain calculations, an steady-state ab-initio laser theory and a semi-analytical coupled-mode formalism. Our simulations show that, for an exemplary four-level gain model, the excitation of dark Fano resonances featuring arbitrarily large quality factors can lead to a significant reduction of the lasing threshold of PCSELs with respect to conventional vertical-cavity surface-emitting lasers. Our calculations also suggest that at the onset of lasing action, most of the laser power generated by finite-size PCSELs is emitted in the photonic crystal plane rather than the vertical direction. In addition to their fundamental interest, these findings may affect further engineering of active devices based on photonic crystal slabs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Bound State in the Continuum and Large-Area Lasing in Periodic Structures

Bound states in the continuum (BICs) are unusual solutions of wave equations describing light or matter: they remain spatially confined even though they exist at the same frequency as a continuum of extended states that propagate to infinity. von Neumann and Wigner proposed the quantum mechanical version of such states in 1929, and the study of BIC is recently revived in nanophotonics where one...

متن کامل

Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy

We describe experimental studies of guided resonances in two-dimensional photonic crystal slabs using coherent single-cycle terahertz pulses. Our measurements directly reveal two stages of pulse transmission in the time domain: an initial pulse resulting from the direct transmission through the photonic crystal slab and a long-lived decaying tail resulting from the finite lifetime of guided res...

متن کامل

Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs.

We demonstrate and distinguish experimentally the existence of a special type of Fano resonances at k≈0 in a macroscopic two-dimensional photonic crystal slab. We fabricate a square lattice array of holes in a silicon nitride layer and perform an angular resolved spectral analysis of the various Fano resonances. We elucidate their radiation behavior using temporal coupled-mode theory and symmet...

متن کامل

Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs

We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry-Pérot condition, and the divergence of the resonance lifetimes...

متن کامل

Stimulated Raman amplification and lasing in silicon photonic band gap nanocavities

The concept and design of L5 photonic band gap nanocavities in two-dimensional (2D) photonic crystal (PhCs) slabs for enhancement of timulated Raman amplification and lasing in monolithic silicon is suggested for the first time. Specific high quality factor (Q) and small modal olume nanocavities are designed which supports the required pump–Stokes modal spacing in silicon, with ultra-low lasing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2011